
94
Primer Consenso Argentino sobre el manejo de la Esquizofrenia. Primera parte: introducción...
Vertex Rev Arg Psiquiatr. (2025). 36(169): 70-95.
lationship be-tween urbanicity during upbringing and schizophrenia risk.
Archives of general psychia-try, 58(11), 1039–1046.
https://doi.org/10.1001/archpsyc.58.11.1039
Peralta, V., & Cuesta, M. J. (2023). Schneider's rst-rank symptoms have
neither diagnos-tic value for schizophrenia nor higher clinical validity than
other delusions and hallucina-tions in psychotic disorders. Psychological
medicine, 53(6), 2708–2711. https://doi.org/10.1017/S0033291720003293
Peters, B. D., Szeszko, P. R., Radua, J., Ikuta, T., Gruner, P., DeRosse, P.,
Zhang, J. P., Giorgio, A., Qiu, D., Tapert, S. F., Brauer, J., Asato, M. R.,
Khong, P. L., James, A. C., Gallego, J. A., & Malhotra, A. K. (2012). White
matter development in adolescence: dif-fusion tensor imaging and me-
ta-analytic results. Schizophrenia bulletin, 38(6), 1308–1317.
https://doi.org/10.1093/schbul/sbs054
Pompili, M., Giordano, G., Luciano, M., Lamis, D. A., Del Vecchio, V.,
Serani, G., Sam-pogna, G., Erbuto, D., Falkai, P., & Fiorillo, A. (2017).
Unmet Needs in Schizophrenia. CNS & neurological disorders drug targets,
16(8), 870–884. https://doi.org/10.2174/1871527316666170803143927
PsychENCODE Consortium, Akbarian, S., Liu, C., Knowles, J. A., Vaccari-
no, F. M., Farn-ham, P. J., Crawford, G. E., Jae, A. E., Pinto, D., Dracheva,
S., Geschwind, D. H., Mill, J., Nairn, A. C., Abyzov, A., Pochareddy, S.,
Prabhakar, S., Weissman, S., Sullivan, P. F., State, M. W., Weng, Z., … Ses-
tan, N. (2015). e PsychENCODE project. Nature neuroscience, 18(12),
1707–1712. https://doi.org/10.1038/nn.4156
Rapoport, J. L., Giedd, J. N., Blumenthal, J., Hamburger, S., Jeries, N.,
Fernandez, T., Nicolson, R., Bedwell, J., Lenane, M., Zijdenbos, A., Paus,
T., & Evans, A. (1999). Pro-gressive cortical change during adolescence in
childhood-onset schizophrenia. A longitu-dinal magnetic resonance ima-
ging study. Archives of general psychiatry, 56(7), 649–654.
https://doi.org/10.1001/archpsyc.56.7.649
Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental
model of schizo-phrenia: update 2012. Molecular psychiatry, 17(12), 1228–
1238. https://doi.org/10.1038/mp.2012.23
Richards, A. L., Pardiñas, A. F., Legge, S. E., et al. (2023). Increased burden
of rare copy number variants in treatment-resistant schizophrenia. Am J
Psychiatry, 180(1), 34–44. https://doi.org/10.1176/appi.ajp.2022.22010063
Ripke, S., Sanders, A. R., Kendler, K. S., et al. (2011). Genome-wide as-
sociation study identies ve new schizophrenia loci. Nat Genet, 43(10),
969–976. https://doi.org/10.1038/ng.940.
Ripke, S., Neale, B. M., Corvin, A., et al. (2014). Biological insights from
108 schizo-phrenia-associated genetic loci. Nature, 511(7510), 421–427.
https://doi.org/10.1038/nature13595.
Ripke, S., Walters, J. T., & O’Donovan, M. C. (2020). Mapping genomic loci
prioritises genes and implicates synaptic biology in schizophrenia. medR-
xiv (Cold Spring Harbor Laboratory).
https://doi.org/10.1101/2020.09.12.20192922
Roussos, P., Mitchell, A. C., Voloudakis, G., Fullard, J. F., Pothula, V. M.,
Tsang, J., Stahl, E. A., Georgakopoulos, A., Ruderfer, D. M., Charney, A.,
Okada, Y., Siminovitch, K. A., Worthington, J., Padyukov, L., Klareskog, L.,
Gregersen, P. K., Plenge, R. M., Ray-chaudhuri, S., Fromer, M., Purcell, S.
M., … Sklar, P. (2014). A role for noncoding varia-tion in schizophrenia.
Cell reports, 9(4), 1417–1429. https://doi.org/10.1016/j.celrep.2014.10.015
Rus-Calafell, M., Lemos-Giràldez, S. (2014). Esquizofrenia y otros tras-
tornos psicóticos: principales cambios del DSM-5. Cuadernos de Medicina
Psicosomática y Psiquiatria de Enlace, 111, 89–93.
Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A systematic review
of the preva-lence of schizophrenia. PLoS medicine, 2(5), e141.
https://doi.org/10.1371/journal.pmed.0020141
Saint-Georges, Z., MacDonald, J., Al-Khalili, R., Hamati, R., Solmi, M.,
Keshavan, M. S., Tuominen, L., & Guimond, S. (2025). Cholinergic sys-
tem in schizophrenia: A systematic review and meta-analysis. Molecular
psychiatry, 30(7), 3301–3315. https://doi.org/10.1038/s41380-025-03023-y
Sanders, B., D'Andrea, D., Collins, M. O., Rees, E., Steward, T. G. J., Zhu,
Y., Chapman, G., Legge, S. E., Pardiñas, A. F., Harwood, A. J., Gray, W. P.,
O'Donovan, M. C., Owen, M. J., Errington, A. C., Blake, D. J., Whitcomb,
D. J., Pocklington, A. J., & Shin, E. (2022). Transcriptional programs regu-
lating neuronal dierentiation are disrupted in DLG2 knockout human
embryonic stem cells and enriched for schizophrenia and related disorders
risk variants. Nature communications, 13(1), 27.
https://doi.org/10.1038/s41467-021-27601-0
Scarr, E., Sundram, S., Keriakous, D., & Dean, B. (2007). Altered hippo-
campal muscarinic M4, but not M1, receptor expression from subjects
with schizophrenia. Biological psy-chiatry, 61(10), 1161–1170.
https://doi.org/10.1016/j.biopsych.2006.08.050
Scarr, E., Cowie, T. F., Kanellakis, S., Sundram, S., Pantelis, C., & Dean,
B. (2009). De-creased cortical muscarinic receptors dene a subgroup of
subjects with schizophrenia. Molecular psychiatry, 14(11), 1017–1023.
https://doi.org/10.1038/mp.2008.28
Schizophrenia Working Group of the Psychiatric Genomics Consortium.
(2014). Biologi-cal insights from 108 schizophrenia-associated genetic
loci. Nature, 511(7510), 421–427. https://doi.org/10.1038/nature13595
Schmitt, A., Steyskal, C., Bernstein, H. G., Schneider-Axmann, T., Parlapa-
ni, E., Schaef-fer, E. L., Gattaz, W. F., Bogerts, B., Schmitz, C., & Falkai, P.
(2009). Stereologic investi-gation of the posterior part of the hippocampus
in schizophrenia. Acta neuropathologica, 117(4), 395–407.
https://doi.org/10.1007/s00401-008-0430-y
Schmitt, A., Malchow, B., Hasan, A., & Falkai, P. (2014). e impact of
environmental factors in severe psychiatric disorders. Frontiers in neuros-
cience, 8, 19. https://doi.org/10.3389/fnins.2014.00019
Sellgren, C. M., Gracias, J., Watmu, B., Biag, J. D., anos, J. M., Whittre-
dge, P. B., Fu, T., Worringer, K., Brown, H. E., Wang, J., Kaykas, A., Karma-
charya, R., Goold, C. P., Sheridan, S. D., & Perlis, R. H. (2019). Increased
synapse elimination by microglia in schizophrenia patient-derived models
of synaptic pruning. Nature neuroscience, 22(3), 374–385.
https://doi.org/10.1038/s41593-018-0334-7
Shelly, J., Uhlmann, A., Sinclair, H., Howells, F. M., Sibeko, G., Wilson,
D., Stein, D. J., & Temmingh, H. (2016). First-Rank Symptoms in Me-
thamphetamine Psychosis and Schi-zophrenia. Psychopathology, 49(6),
429–435. https://doi.org/10.1159/000452476
Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe'er, I., Dudbri-
dge, F., Holmans, P. A., Whittemore, A. S., Mowry, B. J., Olincy, A., Amin,
F., Cloninger, C. R., Silverman, J. M., Buccola, N. G., Byerley, W. F., Black,
D. W., Crowe, R. R., Oksenberg, J. R., Mirel, D. B., … Gejman, P. V. (2009).
Common variants on chromosome 6p22.1 are associated with schizophre-
nia. Nature, 460(7256), 753–757. https://doi.org/10.1038/nature08192
Simpson, E. H., Kellendonk, C., & Kandel, E. (2010). A possible role for the
striatum in the pathogenesis of the cognitive symptoms of schizophrenia.
Neuron, 65(5), 585–596. https://doi.org/10.1016/j.neuron.2010.02.014
Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J. D., Bass,
N., Bigdeli, T. B., Breen, G., Bromet, E. J., Buckley, P. F., Bunney, W. E.,
Bybjerg-Grauholm, J., Byerley, W. F., Chapman, S. B., Chen, W. J., Chur-
chhouse, C., Craddock, N., Cusick, C. M., DeLisi, L., … Daly, M. J. (2022).
Rare coding variants in ten genes confer substantial risk for schizophrenia.
Nature, 604(7906), 509–516. https://doi.org/10.1038/s41586-022-04556-w
Soares-Weiser, K., Maayan, N., Bergman, H., Davenport, C., Kirkham, A.
J., Grabowski, S., & Adams, C. E. (2015). First rank symptoms for schi-
zophrenia. e Cochrane data-base of systematic reviews, 1(1), CD010653.
https://doi.org/10.1002/14651858.CD010653.pub2
Stahl, S. M. (2013). Stahl’s Essential Psychopharmacology: Neuroscientic
Basis and Practical Applications. 4th ed. New York: Cambridge University
Press.
Stahl S. M. (2018). Beyond the dopamine hypothesis of schizophrenia to
three neural net-works of psychosis: dopamine, serotonin, and glutamate.
CNS spectrums, 23(3), 187–191.
https://doi.org/10.1017/S1092852918001013
Stankiewicz, P., & Lupski, J. R. (2010). Structural variation in the human
genome and its role in disease. Annual review of medicine, 61, 437–455.
https://doi.org/10.1146/annurev-med-100708-204735
Stefansson, H., Opho, R. A., Steinberg, S., Andreassen, O. A., Cichon, S.,
Rujescu, D., Werge, T., Pietiläinen, O. P., Mors, O., Mortensen, P. B., Si-
gurdsson, E., Gustafsson, O., Nyegaard, M., Tuulio-Henriksson, A., Inga-
son, A., Hansen, T., Suvisaari, J., Lonnqvist, J., Paunio, T., Børglum, A. D.,
… Collier, D. A. (2009). Common variants conferring risk of schizophre-
nia. Nature, 460(7256), 744–747. https://doi.org/10.1038/nature08186
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a
complex trait: evidence from a meta-analysis of twin studies. Archives of
general psychiatry, 60(12), 1187–1192.
https://doi.org/10.1001/archpsyc.60.12.1187